


A Triumph of Deep Learning: 2012 - present
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Top-performers in many tasks, over many domains

Speech Recognition

NLP

Image classification, detection, localization…



Feature learning: Going Deep

3

Classical
Feature Learning Classifier

Prior Knowledge,
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“Cat”?
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More abstract feature representation

Train with BIG input & 
output, from end to end

Low-level
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Deep learning
• Learn a feature hierarchy all the way from raw inputs (e.g. pixels) to classifier

• Each layer extracts features from the output of previous layer

• Train all layers jointly



Status Quo
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Current Trend:
n To build increasingly larger, deeper networks,

trained with more massive data, based on the
benefits of high-performance computing.

n Play with the connectivity and add “skips”





Grand Challenges
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n Why/how deep learning works? 
l In theory, many cases shouldn’t even work…

l Gap between engineering (or art) and science:
Lack of theoretical understandings &
guarantees, and analytical tools

l Training is computationally expensive and
difficult, relying on many “magics”

l No principled way to incorporate domain
expertise, or to interpret the model behaviors



Perceptron
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Output: sgn(w×x + b)

Can incorporate bias as 
component of the weight 
vector by always including a 
feature with value set to 1



Loose inspiration: Human neurons



Perceptron training algorithm
• Initialize weights
• Cycle through training examples in multiple passes (epochs)
• For each training example:
• Classify with current weights: 
• If classified incorrectly, update weights:

• α is a learning rate that should decay as a function of epoch t, e.g., 
1000/(1000+t)

w←w+α y− y '( ) x

y ' = sgn(w ⋅ x)



Linear separability



How do we make nonlinear classifiers out of 
perceptrons?

• Build a multi-layer neural network!



Network with a single hidden layer

Source: http://cs231n.github.io/neural-networks-1/

• Hidden layer size and network capacity:

http://cs231n.github.io/neural-networks-1/


• Find network weights to minimize the error between true and 
estimated labels of training examples:

• Update weights by gradient descent: w
ww
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• Gradient descent requires neural networks to be equipped with a 
(nearly) differentiable nonlinearity function, called neuron

Sigmoid: g(t) = 1
1+ e−t

Rectified linear unit (ReLU): g(t) = max(0,t) 

Training of multi-layer networks



Forward-Backward Propagation



NNs are Universal Approximators (in theory)

• A feed-forward network with a single hidden layer containing a finite number of nonlinear neurons, 
can approximate any continuous function on compact subsets of Rn, under mild assumptions.

• It is not the specific choice of the activation function, but rather the multilayer feedforward 
architecture itself which gives neural networks the potential of being universal approximators.

• It does not touch upon the algorithmic learnability of those parameters.



Auto-Encoder
• Unsupervised feature extraction
• Reconstruct the input from itself via using “bottleneck”

X = X’



Denoising Auto-Encoder
• Reconstruct the input from a slightly corrupted “noisy” version
• Purpose: learning robust features for better generalization

X = X’ + noise



From NNs to Convolution NNs
The most important building block in modern deep learning



image

From fully connected to convolutional networks



image

feature map

single set of 
weights

From fully connected to convolutional networks



image

feature map

From fully connected to convolutional networks

Convolutional layer

single set of 
weights



Convolution as feature extraction
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Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps
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Key operations in a CNN

Source: R. Fergus, Y. LeCun



T E X A S E L E C T R I C A L  A N D  C O M P U T E R  E N G I N E E R I N G

Review: Computer Vision
Has “Three Levels”

“There’s an
edge!”

“There’s an
object and a
background!” “There’s a chair!”



Deep Features (May) Learn Semantic Hierarchy



Popular Backbones: From LeNet
to DenseNet
A Remarkable Odyssey to Artificial Intelligence by
Human Intelligence



LeNet-5

• Average pooling
• Sigmoid or tanh nonlinearity
• Fully connected layers at the end
• Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, 
Proc. IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


AlexNet, 2012

• The FIRST winner deep model in computer vision, and one of the most classical choices for
domain experts to adapt for their applications

• 5 convolutional layers + 3 fully-connected layers + softmax classifier
• Three Key Design Features: ReLU, dropout, data augmentation



Recap: “Chain Rule”



From Sigmoid to ReLU



Dropout

• Randomly select weights to update
• In each update step, randomly 

sample a different binary mask to all 
the input and hidden units
• Multiple the mask bits with the units 

and do the update as usual
• Typical dropout probability: 0.2 for 

input and 0.5 for hidden units
• Very useful for FC layers, less for conv

layers, not useful in RNNs



Dropout: A Stochastic Ensemble



Data Augmentation

• Adding noise to the input: a special kind of augmentation
• Be careful about the transformation applied -> label preserving

• Example: classifying ‘b’ and ‘d’; ‘6’ and ‘9’



VGG-Net, 2014

Key Technical Features:
• Increase depth (up to 19)
• Smaller filter size (3)

Configurations D and E are
widely used for various tasks,
called VGG-16 and VGG-19



Deep Residual Network (ResNet), 2015

Key Technical Features: skip connections for residual mapping, up to > 1000 layers



Wide ResNet, 2016

• Widening of ResNet blocks (if done properly) provides a more effective way of improving 
performance of residual networks compared to increasing their depth.

• A wide 16-layer deep network has the same accuracy as a 1000-layer thin deep network 
and a comparable number of parameters, although being several times faster to train. 



Densely Connected Convolutional Networks
(DenseNet), 2017

Key Technical Features:
• Finer combination of

multi-scale features
(or whatever…)



(More) Art of Convolutions



Fully Convolutional Network (FCN), 2014

Key Technical Features:
• No fully-connected layer -> No fixed requirement on input size
• Widely adopted in pixel-to-pixel prediction tasks, e.g., image segmentation



U-Net, 2015
• The architecture consists of a 

contracting path to capture 
context
• …and a symmetric expanding 

path to enable precise 
localization.
• Also fully convolutional
• Very popular backbone for 

dense prediction (image 
segmentation, restoration…)



Attention Mechanism
• Idea is simple: add a (learned)

weighted mask to feature (feature
selection)

• Use a feed-forward deep network 
to extract L feature vectors 

• Can use a recurrent network to 
iteratively update the attention 
(shown as bright regions) for each 
output word

• Find meaningful correspondences 
between words and attentions

“Show, Attend and Tell: Neural Image Caption Generation 
with Visual Attention”, 2015



Examples of (Input) Visual Attention



Spatial and Channel Attention



Depth-Wise Convolution

• Depthwise convolution is 
the channel-wise spatial 
convolution. 

• It is often used together
with pointwise convolution,
i.e., 1×1 convolution to 
change the channel
dimension (number of
feature maps)



MobileNet (v1)
• Single streamlined, very light-weight architecture
• Main idea: Depthwise Separable Convolutions
• Other ideas: Width Multiplier α for Thinner 

Models + Resolution Multiplier ρ for Reduced 
Representation



MobileNet (v2)
• Main idea: inverted residual structure 

• Adding residual connections between the narrow bottleneck layers (considerably 
more memory efficient - Why?)

• Non-linearities are removed in narrow layers to maintain representational power
• The intermediate expansion layer uses lightweight depthwise convolutions to 

filter features as a source of non-linearity



3D Convolutional Network (3D CNN), 2011

Key Technical Features:
• Going from 2D convolutional filters to 3D filters, to take temporal coherence into consideration



More Efficient Design?

• “Two-streams hypothesis” for human vision
• The dorsal stream involves in the guidance of actions and 

recognizing where objects are in space. It contains a 
detailed map of the visual field. and detects & analyzes
location movements

• The ventral stream is associated with object recognition 
and form representation. Also described as the “what” 
stream, it has strong connections to the dorsal stream
and other brain regions controlling memory or emotion

• Long story short: human brains use two
relatively independent systems to recognize
objects and to record temporal movements.



Two Stream Network, 2014



Slow-Fast Network, 2019
A state-of-the-art two-stream model with
• (i) a Slow pathway, operating at low frame rate, to capture spatial semantics
• (ii) a Fast pathway, operating at high frame rate, to capture motion at fine 

temporal resolution. 



RNN and LSTM

• A RNN is unfolded its forward and backward computations.
• Backpropagation Through Time (BPTT): Because the parameters are shared by all time steps in the 

network, the gradient at each output depends not only on the calculations of the current time step, 
but also the previous time steps

• Vanishing/Exploding Gradients: Difficulty in learning long-term dependency

An intro article for RNN/LSTM: “Understanding LSTM Networks”:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNN and LSTM

• A Long Short Term Memory (LSTM)
combats vanishing gradients through 
a gating mechanism, thus capturing
long-term dependency better.

• A LSTM does the exact same thing as
a RNN, just in a different way!

• Key Idea: the gating functions are
learned together with weights, and
determine how much information we
would like keep from last state and
current computation, etc.

RNN:

LSTM:



Optimization Algorithms
Where the magic happens



Gradient Descent (GD)



Stochastic Gradient Descent (SGD)



GD versus SGD



Minibatch

• Potential Problem: Gradient estimates can be very noisy
• Obvious Solution: Use larger mini-batches (In theory, growingly larger)

• Advantage: Computation time per update does not depend on number of 
training examples.
• This allows convergence on extremely large datasets

• The larger MB size the better (only if you can)!!

“Large Scale Learning with Stochastic Gradient Descent”, Leon Bottou.



Momentum

• The Momentum method is a method 
to accelerate learning using SGD

• In particular SGD suffers in the 
following scenarios:
• Error surface has high curvature
• Small but consistent gradients
• Noisy gradients



Momentum



Adaptive Learning Rate Optimization

• Popular Solver Examples: AdGrad, RMSProp, Adam



Batch Normalization

• In ML, we assume future data will 
be drawn from same probability 
distribution as training data

• For a hidden layer, after training, 
the earlier layers have new 
weights and hence may generate 
a new distribution for the next
hidden layer

• We want to reduce this internal 
covariate shift for the benefit of 
later layers



Batch Normalization

• First three steps are just like standardization of input data, but with respect to only 
the data in mini-batch. 

• We can take derivative and incorporate the learning of last step parameters into 
backpropagation.

• Note last step can completely un-do previous 3 steps

• But even if so, this un-doing is driven by the later layers, not the earlier layers; later 
layers get to “choose” whether they want standard normal inputs or not

• In fact, the true reason why BN works remains to be a mystery …



Many Normalization Schemes…

Comparing Popular Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C
as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and 
variance, computed by aggregating the values of these pixels. 



Weight Initialization
• All Zero Initialization: Terribly Wrong!

• If every neuron in the network computes the same output, then they will also all compute the same gradients 
during back-propagation and undergo the exact same parameter updates.

• Need “break the symmetry”

• Small Random Initialization is the standard practice

• Current recommendation for initializing CNNs with RELU: Why?

w = np.random.randn(n) * sqrt(2.0/n)

• “randn”: Gaussian; “n”: the number of inputs for current layer.

• For general NNs, layer-wise pre-training is safe.

• Even safer: start from a pre-trained model



Choice of Activation Functions

Sigmoid Tanh
Softplus ELU



Monitor Your
Training Curve




