

A Triumph of Deep Learning: 2012 - present

2

Top-performers in many tasks, over many domains

Speech Recognition

NLP

Image classification, detection, localization…

Feature learning: Going Deep

3

Classical
Feature Learning Classifier

Prior Knowledge,
Domain Expertise

“Cat”?

Mid-level
Features

High-level
Features Classifier

More abstract feature representation

Train with BIG input &
output, from end to end

Low-level
Features

Deep learning
• Learn a feature hierarchy all the way from raw inputs (e.g. pixels) to classifier

• Each layer extracts features from the output of previous layer

• Train all layers jointly

Status Quo

5

Current Trend:
n To build increasingly larger, deeper networks,

trained with more massive data, based on the
benefits of high-performance computing.

n Play with the connectivity and add “skips”

Grand Challenges

7

n Why/how deep learning works?
l In theory, many cases shouldn’t even work…

l Gap between engineering (or art) and science:
Lack of theoretical understandings &
guarantees, and analytical tools

l Training is computationally expensive and
difficult, relying on many “magics”

l No principled way to incorporate domain
expertise, or to interpret the model behaviors

Perceptron

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: sgn(w×x + b)

Can incorporate bias as
component of the weight
vector by always including a
feature with value set to 1

Loose inspiration: Human neurons

Perceptron training algorithm
• Initialize weights
• Cycle through training examples in multiple passes (epochs)
• For each training example:
• Classify with current weights:
• If classified incorrectly, update weights:

• α is a learning rate that should decay as a function of epoch t, e.g.,
1000/(1000+t)

w←w+α y− y '() x

y ' = sgn(w ⋅ x)

Linear separability

How do we make nonlinear classifiers out of
perceptrons?

• Build a multi-layer neural network!

Network with a single hidden layer

Source: http://cs231n.github.io/neural-networks-1/

• Hidden layer size and network capacity:

http://cs231n.github.io/neural-networks-1/

• Find network weights to minimize the error between true and
estimated labels of training examples:

• Update weights by gradient descent: w
ww

¶
¶

-¬
Ea

E(w) = yj − fw (x j)()
2

j=1

N

∑

Training of multi-layer networks

w1

w2

• Gradient descent requires neural networks to be equipped with a
(nearly) differentiable nonlinearity function, called neuron

Sigmoid: g(t) = 1
1+ e−t

Rectified linear unit (ReLU): g(t) = max(0,t)

Training of multi-layer networks

Forward-Backward Propagation

NNs are Universal Approximators (in theory)

• A feed-forward network with a single hidden layer containing a finite number of nonlinear neurons,
can approximate any continuous function on compact subsets of Rn, under mild assumptions.

• It is not the specific choice of the activation function, but rather the multilayer feedforward
architecture itself which gives neural networks the potential of being universal approximators.

• It does not touch upon the algorithmic learnability of those parameters.

Auto-Encoder
• Unsupervised feature extraction
• Reconstruct the input from itself via using “bottleneck”

X = X’

Denoising Auto-Encoder
• Reconstruct the input from a slightly corrupted “noisy” version
• Purpose: learning robust features for better generalization

X = X’ + noise

From NNs to Convolution NNs
The most important building block in modern deep learning

image

From fully connected to convolutional networks

image

feature map

single set of
weights

From fully connected to convolutional networks

image

feature map

From fully connected to convolutional networks

Convolutional layer

single set of
weights

Convolution as feature extraction

Input Feature Map

.

.

.

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Input Feature Map

.

.

.

Key operations in a CNN

Source: R. Fergus, Y. LeCun

T E X A S E L E C T R I C A L A N D C O M P U T E R E N G I N E E R I N G

Review: Computer Vision
Has “Three Levels”

“There’s an
edge!”

“There’s an
object and a
background!” “There’s a chair!”

Deep Features (May) Learn Semantic Hierarchy

Popular Backbones: From LeNet
to DenseNet
A Remarkable Odyssey to Artificial Intelligence by
Human Intelligence

LeNet-5

• Average pooling
• Sigmoid or tanh nonlinearity
• Fully connected layers at the end
• Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

AlexNet, 2012

• The FIRST winner deep model in computer vision, and one of the most classical choices for
domain experts to adapt for their applications

• 5 convolutional layers + 3 fully-connected layers + softmax classifier
• Three Key Design Features: ReLU, dropout, data augmentation

Recap: “Chain Rule”

From Sigmoid to ReLU

Dropout

• Randomly select weights to update
• In each update step, randomly

sample a different binary mask to all
the input and hidden units
• Multiple the mask bits with the units

and do the update as usual
• Typical dropout probability: 0.2 for

input and 0.5 for hidden units
• Very useful for FC layers, less for conv

layers, not useful in RNNs

Dropout: A Stochastic Ensemble

Data Augmentation

• Adding noise to the input: a special kind of augmentation
• Be careful about the transformation applied -> label preserving

• Example: classifying ‘b’ and ‘d’; ‘6’ and ‘9’

VGG-Net, 2014

Key Technical Features:
• Increase depth (up to 19)
• Smaller filter size (3)

Configurations D and E are
widely used for various tasks,
called VGG-16 and VGG-19

Deep Residual Network (ResNet), 2015

Key Technical Features: skip connections for residual mapping, up to > 1000 layers

Wide ResNet, 2016

• Widening of ResNet blocks (if done properly) provides a more effective way of improving
performance of residual networks compared to increasing their depth.

• A wide 16-layer deep network has the same accuracy as a 1000-layer thin deep network
and a comparable number of parameters, although being several times faster to train.

Densely Connected Convolutional Networks
(DenseNet), 2017

Key Technical Features:
• Finer combination of

multi-scale features
(or whatever…)

(More) Art of Convolutions

Fully Convolutional Network (FCN), 2014

Key Technical Features:
• No fully-connected layer -> No fixed requirement on input size
• Widely adopted in pixel-to-pixel prediction tasks, e.g., image segmentation

U-Net, 2015
• The architecture consists of a

contracting path to capture
context
• …and a symmetric expanding

path to enable precise
localization.
• Also fully convolutional
• Very popular backbone for

dense prediction (image
segmentation, restoration…)

Attention Mechanism
• Idea is simple: add a (learned)

weighted mask to feature (feature
selection)

• Use a feed-forward deep network
to extract L feature vectors

• Can use a recurrent network to
iteratively update the attention
(shown as bright regions) for each
output word

• Find meaningful correspondences
between words and attentions

“Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention”, 2015

Examples of (Input) Visual Attention

Spatial and Channel Attention

Depth-Wise Convolution

• Depthwise convolution is
the channel-wise spatial
convolution.

• It is often used together
with pointwise convolution,
i.e., 1×1 convolution to
change the channel
dimension (number of
feature maps)

MobileNet (v1)
• Single streamlined, very light-weight architecture
• Main idea: Depthwise Separable Convolutions
• Other ideas: Width Multiplier α for Thinner

Models + Resolution Multiplier ρ for Reduced
Representation

MobileNet (v2)
• Main idea: inverted residual structure

• Adding residual connections between the narrow bottleneck layers (considerably
more memory efficient - Why?)

• Non-linearities are removed in narrow layers to maintain representational power
• The intermediate expansion layer uses lightweight depthwise convolutions to

filter features as a source of non-linearity

3D Convolutional Network (3D CNN), 2011

Key Technical Features:
• Going from 2D convolutional filters to 3D filters, to take temporal coherence into consideration

More Efficient Design?

• “Two-streams hypothesis” for human vision
• The dorsal stream involves in the guidance of actions and

recognizing where objects are in space. It contains a
detailed map of the visual field. and detects & analyzes
location movements

• The ventral stream is associated with object recognition
and form representation. Also described as the “what”
stream, it has strong connections to the dorsal stream
and other brain regions controlling memory or emotion

• Long story short: human brains use two
relatively independent systems to recognize
objects and to record temporal movements.

Two Stream Network, 2014

Slow-Fast Network, 2019
A state-of-the-art two-stream model with
• (i) a Slow pathway, operating at low frame rate, to capture spatial semantics
• (ii) a Fast pathway, operating at high frame rate, to capture motion at fine

temporal resolution.

RNN and LSTM

• A RNN is unfolded its forward and backward computations.
• Backpropagation Through Time (BPTT): Because the parameters are shared by all time steps in the

network, the gradient at each output depends not only on the calculations of the current time step,
but also the previous time steps

• Vanishing/Exploding Gradients: Difficulty in learning long-term dependency

An intro article for RNN/LSTM: “Understanding LSTM Networks”:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN and LSTM

• A Long Short Term Memory (LSTM)
combats vanishing gradients through
a gating mechanism, thus capturing
long-term dependency better.

• A LSTM does the exact same thing as
a RNN, just in a different way!

• Key Idea: the gating functions are
learned together with weights, and
determine how much information we
would like keep from last state and
current computation, etc.

RNN:

LSTM:

Optimization Algorithms
Where the magic happens

Gradient Descent (GD)

Stochastic Gradient Descent (SGD)

GD versus SGD

Minibatch

• Potential Problem: Gradient estimates can be very noisy
• Obvious Solution: Use larger mini-batches (In theory, growingly larger)

• Advantage: Computation time per update does not depend on number of
training examples.
• This allows convergence on extremely large datasets

• The larger MB size the better (only if you can)!!

“Large Scale Learning with Stochastic Gradient Descent”, Leon Bottou.

Momentum

• The Momentum method is a method
to accelerate learning using SGD

• In particular SGD suffers in the
following scenarios:
• Error surface has high curvature
• Small but consistent gradients
• Noisy gradients

Momentum

Adaptive Learning Rate Optimization

• Popular Solver Examples: AdGrad, RMSProp, Adam

Batch Normalization

• In ML, we assume future data will
be drawn from same probability
distribution as training data

• For a hidden layer, after training,
the earlier layers have new
weights and hence may generate
a new distribution for the next
hidden layer

• We want to reduce this internal
covariate shift for the benefit of
later layers

Batch Normalization

• First three steps are just like standardization of input data, but with respect to only
the data in mini-batch.

• We can take derivative and incorporate the learning of last step parameters into
backpropagation.

• Note last step can completely un-do previous 3 steps

• But even if so, this un-doing is driven by the later layers, not the earlier layers; later
layers get to “choose” whether they want standard normal inputs or not

• In fact, the true reason why BN works remains to be a mystery …

Many Normalization Schemes…

Comparing Popular Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C
as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and
variance, computed by aggregating the values of these pixels.

Weight Initialization
• All Zero Initialization: Terribly Wrong!

• If every neuron in the network computes the same output, then they will also all compute the same gradients
during back-propagation and undergo the exact same parameter updates.

• Need “break the symmetry”

• Small Random Initialization is the standard practice

• Current recommendation for initializing CNNs with RELU: Why?

w = np.random.randn(n) * sqrt(2.0/n)

• “randn”: Gaussian; “n”: the number of inputs for current layer.

• For general NNs, layer-wise pre-training is safe.

• Even safer: start from a pre-trained model

Choice of Activation Functions

Sigmoid Tanh
Softplus ELU

Monitor Your
Training Curve

